Source code for mot.library_functions.continuous_distributions.normal

from mot.library_functions import polevl, p1evl
from mot.library_functions.base import SimpleCLLibrary

__author__ = 'Robbert Harms'
__date__ = '2018-05-07'
__maintainer__ = 'Robbert Harms'
__email__ = 'robbert.harms@maastrichtuniversity.nl'
__licence__ = 'LGPL v3'


[docs]class normal_pdf(SimpleCLLibrary): def __init__(self): """Compute the Probability Density Function of the Gaussian distribution.""" super().__init__(''' double normal_pdf(double x, double mean, double std){ return exp(-((x - mean) * (x - mean)) / (2 * std * std)) / sqrt(2 * M_PI * std * std); } ''')
[docs]class normal_logpdf(SimpleCLLibrary): def __init__(self): """Compute the log of the Probability Density Function of the Gaussian distribution.""" super().__init__(''' double normal_logpdf(double x, double mean, double std){ return -((x - mean) * (x - mean)) / (2 * std * std) - (log(std) + (0.5 * log(2 * M_PI))); } ''')
[docs]class normal_cdf(SimpleCLLibrary): def __init__(self): """Compute the Cumulative Distribution Function of the Gaussian distribution.""" super().__init__(''' double normal_cdf(double x, double mean, double std){ return (1 + erf((x - mean) / (std * M_SQRT2))) / 2.0; } ''')
[docs]class normal_ppf(SimpleCLLibrary): def __init__(self): """Computes the inverse of the cumulative distribution function of the Gaussian distribution. This is the inverse of the Gaussian CDF. """ super().__init__(''' double normal_ppf(double y, double mean, double std){ return _ndtri(y) * std + mean; }''', dependencies=(_ndtri(),))
class _ndtri(SimpleCLLibrary): def __init__(self): """Inverse of Normal distribution function. Code taken from Scipy (https://github.com/scipy/scipy/blob/master/scipy/special/cephes/NDTRI.c), 05-05-2018. Returns the argument, x, for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to y. For small arguments 0 < y < exp(-2), the program computes z = sqrt( -2.0 * log(y) ); then the approximation is x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). There are two rational functions P/Q, one for 0 < y < exp(-32) and the other for y up to exp(-2). For larger arguments, w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). """ super().__init__(''' double _ndtri(double y){ /* approximation for 0 <= |y - 0.5| <= 3/8 */ double P0[5] = { -5.99633501014107895267E1, 9.80010754185999661536E1, -5.66762857469070293439E1, 1.39312609387279679503E1, -1.23916583867381258016E0, }; double Q0[8] = { /* 1.00000000000000000000E0, */ 1.95448858338141759834E0, 4.67627912898881538453E0, 8.63602421390890590575E1, -2.25462687854119370527E2, 2.00260212380060660359E2, -8.20372256168333339912E1, 1.59056225126211695515E1, -1.18331621121330003142E0, }; /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. */ double P1[9] = { 4.05544892305962419923E0, 3.15251094599893866154E1, 5.71628192246421288162E1, 4.40805073893200834700E1, 1.46849561928858024014E1, 2.18663306850790267539E0, -1.40256079171354495875E-1, -3.50424626827848203418E-2, -8.57456785154685413611E-4, }; double Q1[8] = { /* 1.00000000000000000000E0, */ 1.57799883256466749731E1, 4.53907635128879210584E1, 4.13172038254672030440E1, 1.50425385692907503408E1, 2.50464946208309415979E0, -1.42182922854787788574E-1, -3.80806407691578277194E-2, -9.33259480895457427372E-4, }; /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. */ double P2[9] = { 3.23774891776946035970E0, 6.91522889068984211695E0, 3.93881025292474443415E0, 1.33303460815807542389E0, 2.01485389549179081538E-1, 1.23716634817820021358E-2, 3.01581553508235416007E-4, 2.65806974686737550832E-6, 6.23974539184983293730E-9, }; double Q2[8] = { /* 1.00000000000000000000E0, */ 6.02427039364742014255E0, 3.67983563856160859403E0, 1.37702099489081330271E0, 2.16236993594496635890E-1, 1.34204006088543189037E-2, 3.28014464682127739104E-4, 2.89247864745380683936E-6, 6.79019408009981274425E-9, }; double x, y1, z, y2, x0, x1; int code; if (y <= 0.0){ return -INFINITY; } if (y >= 1.0){ return INFINITY; } code = 1; y1 = y; if (y1 > (1.0 - 0.13533528323661269189)) { /* 0.135... = exp(-2) */ y1 = 1.0 - y1; code = 0; } if (y1 > 0.13533528323661269189) { y1 = y1 - 0.5; y2 = y1 * y1; x = y1 + y1 * (y2 * polevl(y2, P0, 4) / p1evl(y2, Q0, 8)); x = x * 2.50662827463100050242E0; /* sqrt(2pi) */ return (x); } x = sqrt(-2.0 * log(y1)); x0 = x - log(x) / x; z = 1.0 / x; if (x < 8.0) { /* y1 > exp(-32) = 1.2664165549e-14 */ x1 = z * polevl(z, P1, 8) / p1evl(z, Q1, 8); } else{ x1 = z * polevl(z, P2, 8) / p1evl(z, Q2, 8); } x = x0 - x1; if (code != 0){ x = -x; } return (x); } ''', dependencies=(polevl(), p1evl()))